If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+44x-20=0
a = 2; b = 44; c = -20;
Δ = b2-4ac
Δ = 442-4·2·(-20)
Δ = 2096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2096}=\sqrt{16*131}=\sqrt{16}*\sqrt{131}=4\sqrt{131}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{131}}{2*2}=\frac{-44-4\sqrt{131}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{131}}{2*2}=\frac{-44+4\sqrt{131}}{4} $
| 4(x+0.1)=1.6 | | 7+4w–9=–6 | | 8x+40=7x-49 | | 2(x1/2)=15 | | 17h-10h-3h-4h+4h=20 | | 17h−10h−3h−4h+4h=20 | | 15m-12m-2m+3m=16 | | (2x-30)+(8x-180)=(4x-90)+x | | 5x-30=-60 | | 87.65/100=x/4.3 | | 10x=-14x | | -3x+-15=12 | | 15m−12m−2m+3m=16 | | 3x=9=36 | | 6.60=80+x | | 5/x=150.60 | | 4(a+10)=50+2a | | 3/4p+12=0 | | 13=11x | | 7x-3x=7x+3x–24 | | 3/4p+12=0* | | 8z-7z=20 | | 8a-2=3a+8 | | 3y-4+y+20=360 | | 6^(2x-1)=250 | | 3(3y-5)+5=26 | | 2+2x+1=5 | | 3+18a–1a+11–7a=6a+1+3a+9+5a | | 1382=64+p | | -2(9-4y)=-18 | | 9+11=5x-1 | | 2m+9=31 |